Fake Mathcad Worksheet Simulation - Material Properties Calculation

Project Omega: Supplemental FEA Calculations

Dr. E. Noether | Rev: 3.2

1. Governing Equations

Wave equation with damping for displacement u(x,t):

ρ2ut2+γutσ=f

Cauchy Stress Tensor σ and Strain Tensor ϵ:

σ=C:ϵ(Linear Elasticity) ϵ=12(u+(u)T)

2. Constitutive Models

Neo-Hookean strain energy density function W:

W=μ2(I13)μln(J)+λ2(ln(J))2

Where I1=tr(b) and J=det(F).

Alternative Mooney-Rivlin model (2 parameters):

W=C10(I13)+C01(I23)+1D1(J1)2

Second Piola-Kirchhoff stress tensor S from W:

S=2WC

Material Parameters Used:

3. Loads & Boundary Conditions

Dirichlet BC: u(x,t)=0 for xΓD.

Neumann BC (Pressure): σn=p(t)n for xΓN.

Applied time-varying pressure load p(t):

p(t)=P0(1+Asin(2πft+ϕ))

Parameters: P0=5e5Pa, A=0.4, f=2Hz, ϕ=0.

4. Numerical Integration (Newmark-beta)

Predictor step:

U~n+1=Un+ΔtU˙n+(Δt)22(12β)U¨n U~˙n+1=U˙n+(1γNM)ΔtU¨n

Corrector step:

U¨n+1=(M+γNMΔtC+β(Δt)2Kn+1)1(Fext,n+1Fint(U~n+1)CU~˙n+1) /* Note: Implicit dependence on K(U) */ Un+1=U~n+1+β(Δt)2U¨n+1 U˙n+1=U~˙n+1+γNMΔtU¨n+1

Used: β=0.25, γNM=0.5, Δt=0.001s.

5. Stress Calculation & Results

Von Mises equivalent stress σVM:

σVM=12[((σ11σ22)2+(σ22σ33)2+(σ33σ11)2+6(σ122+σ232+σ312)]

Peak stress observed: \( \sigma_{VM,max} = 485 \, \text{MPa} \) at \( t = 3.72 \, \text{s} \).

Safety Factor (SF):

\[ SF = \frac{\sigma_y}{\sigma_{VM,max}} = \frac{550 \, \text{MPa}}{485 \, \text{MPa}} \approx 1.13 \]

6. Modal Analysis

Generalized eigenvalue problem:

Kϕi=ωi2Mϕi

Modal participation factor Γi for load vector P:

Γi=ϕiTMPϕiTMϕi

Effective modal mass Meff,i:

Meff,i=(ϕiTM1)2ϕiTMϕi

Natural Frequencies:

Mode (i)Freq (Hz), fiEffective Mass (%)
15.1265.2% (X-dir)
25.2563.8% (Y-dir)
315.870.1% (Rz-dir)
422.412.5% (X-dir)

7. Conclusion Summary

SF > 1 indicates design adequacy under specified load. Lowest natural frequency f1=5.12 Hz is sufficiently above load frequency f=2 Hz. Recommend fatigue analysis.