Wave equation with damping for displacement
Cauchy Stress Tensor
Neo-Hookean strain energy density function
Where
Alternative Mooney-Rivlin model (2 parameters):
Second Piola-Kirchhoff stress tensor
Material Parameters Used:
Dirichlet BC:
Neumann BC (Pressure):
Applied time-varying pressure load
Parameters:
Predictor step:
Corrector step:
Used:
Von Mises equivalent stress
Peak stress observed: \( \sigma_{VM,max} = 485 \, \text{MPa} \) at \( t = 3.72 \, \text{s} \).
Safety Factor (SF):
\[ SF = \frac{\sigma_y}{\sigma_{VM,max}} = \frac{550 \, \text{MPa}}{485 \, \text{MPa}} \approx 1.13 \]Generalized eigenvalue problem:
Modal participation factor
Effective modal mass
Natural Frequencies:
Mode (i) | Freq (Hz), | Effective Mass (%) |
---|---|---|
1 | 5.12 | 65.2% (X-dir) |
2 | 5.25 | 63.8% (Y-dir) |
3 | 15.8 | 70.1% (Rz-dir) |
4 | 22.4 | 12.5% (X-dir) |
SF > 1 indicates design adequacy under specified load. Lowest natural frequency